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NOMENCLATURE

Arxrea
Area ratio = (outlet area)/(inlet area)
Performance = (Pz-Pl)/q1

Ideal performance = (P,-P,);/q

Mach Number

Diffuser length along centerline

Static pressure

Mean dynamic pressure = kpuz

Diffuser radius

FPree stream velocity

Velo?ijy at any point

Diffuser width - two-dimensional, plane-walled
Distance along centerline from diffuser inlet
Displacement thickness of boundary layer
Effectiveness = (P,~P,)/(Py=P;);

Momentum thickness of boundary layér

Density

Total divergence angle

Subscripts
Ideal

Stagnation
Diffuser inlet plane

piffuser outlet plane

e e e . - . .



viii

ABSTRACT

Experiments have been performed to determine the
effect of subsonic inlet Mach number on diffuser performance
and flow regimes for a wide range of conical diffuser geome-
tries.

For incompressible flow the line of first appreciable
stall, line a~-a, is essentially that found by McDonald and
Fox (Reference 2). As the Mach number is increased, the flow
tends more toward separation in all cases.

Diffuser performance maps are presented for three dif-
ferent inlet Mach numbers (Ml = 0,25, 0.55, 0.70). There is
no significant variation in the location of the line of max-
imum performance at constant length to inlet radius ratio, ;
line a~a, with inlet Mach number. For M) = 0.25 line a-a
of the present study is virtually identical to that found in
the earlier water flow studies of McDonald and Fox (Reference

2).
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INTRODUCTION

Performance of conical diffusers is dependent on
both flow and geometric variables. Previous work has
indicated that the geometric variables of importance are
total divergence angle, 24, length to inlet radius ratio,
N/Rl, and area ratio, AR. The flow variables are more
numerous and often somewhat more difficult to identify. 1In
part they are inlet boundary layer thickness, Mach number,
turbulence intensity, and Reynolds number. The large number
of variables makes a generalized theory of diffusers dif-
ficult; considerable data are required to determine the effect
of a single variables over a range of the other variables.

In the past many investigators have been more interested
in improving the performance of a single diffﬁser rather than
formulating any relationships for a wide range of geometries
and flow conditions. A summary of previous investigations of
two-dimensional, plane-walled diffusers is given by Kline, et

*
1 for the case of steady, incompressible flow with a thin

al
inlet boundary layer (compared to the inlet width of the dif-
fuser). The summary includes observations of flow regime
(degree of separation) and measurements of performance over

a wide range of diffuser divergence angles and length ratios.

* Superscript numbers will be used to denote items in the
Lic: of References.



The results showed that flow reaime was primarily dependent

on the geometrv of the diffuser, kut that the performance
depended on cther variables as wvell. The results of Pefer-
ence 1 were presented on coordinates of divergence angle versus
length ratic. The location of "first appreciable stall"™

was desianated as lina a-a; the lire of maximum pressure
recovery for fixed N/H1 vwas designated as line a~a. The
location of these lines for two-dimensional, plane-walled

diffusers is shown in r'igure 1. McDcnald and Fox2

performed
a systematic investigation of flow regimes and diffuser
pexformance over a wide range of conical diffuser geometries.
The location of lines a-a and a-a as presented in Reference

2 are alsc shown in Figure 1. Poth of these studies were for
incompressitle flow and were primarily concerned with the
effect of geometric variables on flow reaimes and diffuser
performance.

The purpose of this work is to extend the investigations
of McDonald to regions of compressitle flow; i.e., to de-
termine the effect of subsonic inlet Mach number on flow regime
and performance in conical diffusers. Several investigators

(Ackeret3; Copp‘; Little and Wilburs: Naumann6

; Scherrer and
Anderson7) have taken data on the effects of Mach number on
diffuser performance; however, these data are only for a smell
number of geometries grouped arcund the line of optimum
performance; the values of the gecmetrical parameters em-
ployed in these earlier investigations are shown in Figure 1.

It should ke noted that in all cases the exit of the diffusers

was joined to a tailpipe. This limited data indicated that

- . ew ey B T, e~ .- P
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there is little effect of Mach number on diffuser performance
or flow regime until the flow becomes choked. In view of the
limited data available, a systematic investigation was under-
taken to determine the effect of subsonic inlet Mach number
on diffuser performance and flow regime over a wide range of
conical diffuser geometries.

In the present study the dependcnce of flow regime and
performance on inlet Mach number was determined experiment-
ally for the nineteen conical diffuser geometries employed in
the work of McDonald and Poxz. The results were then cor-
related with the geometric variables in an attempt to find
useful relationships for predicting @iffuser behavior under

a given set of inlet conditioms.

. v gt e cogpr o w



EXPERIMENTAL FACILITY

The arrangement and dimensions of the wind tunnel used
in the present study are shown in Figure 2, The tunnel was
of the blow through type, Air from a Spencer turbo-blcower
came through a 24 inch diameter pipe and into a transition
section; the transition section changed the passage from the
round pipe to a 20 inch x 20 inch square channel which served
as an upstream plenum. This plenum section, containing flow
straighteners and screens, was 32 inches in length. Flow
entered the diffuser test sections through a converging
nozzle designed according to Smith and Wangs. (The nozzle
was designed from curve (a) of Reference 8; the nozzle
contour was taken from a chart given by the authors and
scaled up to the desired size.) The nozzle was bolted
through the downstream face of the plenum and extended a dis-
tance of 7.86 inches upstream into the plenum. For ease of
construction, the nozzle was fabricated in two pieces as
shown in Figure 3. The constant area section extended for
5 inches beyond the plenum wall. The inside of the straight
section was machined and polished to insure close matching
with both the end of the nozzle and the diffuser. The dif-
fuser was fhen bolted to the straight section with the align-
ment maijicained by two pins. The exit of the diffuser was

fastened to a plexiglass plate which was in turn bolted to
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the downstream section of the tunnel. The attachment was
made so that the exit plane of the diffuser was flush with
the plate. The downstream part of the tunnel was clamped

to the plywood sheet upon which it rested in such a manner
that it could be moved back and forth to allow for different
diffuser lengths. The downstream plenum was 42 inches long;
the flow exhausted to thg room.

Wall pressure measuz;ments vere taken along the diffuser
length; the pressure tap locations are given in Appendix A.
Tygon tubing was run from the pressure taps to 2 bank of
mercury manometers. The manometers had a least count of 0.05
inches and this was used as the basic module of the readings '
taken. Since there was usually a fluctuation in the readings
of the manometers of 0.025 inches, it was felt that it would
be unrealistic to take readings closer than the least count.

During the early runs a great deal of trouble was en-
countered with separation and irregqular flow in diffusers
which should have run smoothly. This was traced to distur-
bances in the air at the exit of the blower. To correct
this condition, a set of flow straighteners and 4 screens
were installed in the upstream plenum. The straighteners
consisted of a 1% inch square grid of sheet metal 4 inches
long. This broke up the large disturbances and the screens
following the straighteners ‘urther reduced the scale of the
disturbances. Three other steps were also taken which helped
even more than the straighteners and screens. The butterfly

valve on the blower outlet, which was at first used to control

the air flow, was left wide open; the air flow was controlled

ey u—
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by a butterfly valve on the blower inlet., This eliminated
the large vortex which was being shed off of the partially
opened outlet valve. Through use of the bypass the blower
pover level was maintained above 150 kw. This put the blower
above its surge point. Extraneous piping was removed from
the blower inlet so that the blower inlet flow was reasonably
uniform. 17ith these precautions taken, the output of the
blower became quite regular and at low speed the diffusers
behaved as they had for McDonald and Foxz.

The diffusers employed in the present work were those
used by McDonald and Poxz. The range of divergence angles
and length ratios cover a wide range of diffuser geometries
including the region of maximum diffuser performance. A des-
cription of the diffuser design and construction can be found
in Reference 2 (page 37.).

The degree of separation (flow regime) in the diffusers
was determined by observations of cotton threads taped to the
diffuser walls. Threads were equally spaced around the
circumference of the diffuser at several axial positions
along the diffuser length. Each of the threads was rein-
forced with a slight amount of glue on the free end. Without
the glue the threads tended to ravel in the high velocity
air stream. To obtain the maximum sensitivity, the amount of
glue used was kept to an absolute minimum, The degree of
separation was determined according to the criteria of Table 1.
The cases where separation was localized in one part of the

diffuser (such as the downstream end) are noted in the data

presentation.
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Table 1. Flow Regime Criteria
Movement and orientation of thread Type of flow Symbol
Thread held near wall, pointing Steady flow with -
downstream, occasionally wiggling occasional

disturbance

Major part of time thread points Intermittent I
downstream, wiggling; random transitory
flickering (thread quickly points stall

upstream, then downstream again)
indicating temporary and loeal
separation

Thread whips continually

upstream and downstream, indicating
rapid and chaotic occurence and
disappearance of separation

Thread whips upstream and
downstream major part of time;
thread held in upstream position
wiggling at random intervals

Thread held upstream major part
of time; temporary whipping at
random intervals

Thread held upstream with
end wiggling

Local transitory T
stall

Local transito-y TIPF
stall with
intermittent

fixed stall

Local fixed
stall with
intermittent
transitory stall

FIT

Local fixed stall F

o e i@ oea. -
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RESULTS

The flow regime was determined in a given diffuser as a
fuanction of inlet Mach number. The flow regimes are indicated
on Figure 4. The first symbol indicates the low speed flow
regime; the second symbol indicates the flow regime at the
highest inlet Mach number tested. The low speed results
differed little from those of McDonald and Foxz. However,
with increasing inlet Mach number the flow tended more toward
separation in all cases. In instances where this does not
show on Figure 4, it is because the worsening of the flow
vas not enough to push it into the next flow regime category.
Another item worthy of note is that as length was added to
the diffusers, the flow tended to worsen only in the added
section. In other words, the flow in the first 4 inches of
an 8 degree, 4 inch diffuser tended to be the same as the
flov in the first 4 inches of an 8 degree, 8 inch diffuser.

To determine performance the data were taken for each
diffuser as the Mach number was increased incrementally up to
a maximum, For about half the diffusers this maximum was
at the point of local choking and for the others it was at
the limit of the blower. In either case, the maximum inlet
Mach number was always greater than 0.65. Data were taken for
at least 10 values of the Mach number between low speed flow
and the limit points. The data taken were the plenum (stag-

nation) pressure, diffuser inlet ctatic pressure (in the
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4T | I
a~a Line of First Appreciable Stall for
Incompressible Flow (From Reference 2)
TeTIP TIFSF  TIPP
32—e ° ®

o ° ® ® s——
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First symbol indicates low speed flow regime; seco
symbol indicates flow regime at highest subsonic
inlet Mach number. | | i
2 4 8 e 32
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Pigure 4. Effect of Inlet Mach Mumber on Plovw Regimes in
Conical Diffusers
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constant area portion of the nozzle), the static pressures

at stations along the diffusers and the downstream plenum
pressure. From these the diffuser performance and the pressure
profile along the diffuser could be obtained. All the data
taken are summarized in Appendix A.

The tunnel'systen was checked to determine the inlet
turbulence intensity and inlet boundary-layer thickness. A
hot wire anemowmeter was used for both of these measurements.
The equipment used was a constant current Flow Corporation
model HWB 3. A single wire was mounted, calibrated and then

‘used for all measurements. PFor an inlet free stream velocity

of 160 fps the turbulence intensity was found to be at a

' rather high level of 108, There was evidentally a high

turbulence level created in the blower that was only parti-
ally corrected by the screens and large contraction ratio.

The velocity profile was integrated to give the momentum
and displacement thicknesses. For an inlet free stream
velocity of 160 fps the ratio of momentum thickness and dis-
placement thickness to inlet radius were 0.011] and 0,017
respectively. The actual boundary layer thickness was on
the order of 0.06 inches.

In calculating the performance from -the pressure data
the following assumptions were made:

1. Friction in the noszzle is .negligible and the nozzle
flow is one-dimensional. This is reasomable becaurc of the
short distance involved. Thus, the one-dimensional isentropic
relations can be used to calculate the Mach number at the

diffuser entrance.
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" 2. Stagnation conditions occar in the upstream section
of the wind tunnel. Calculations showed a better than 100:1
velocity ratio between the test section and the upstream
plenum. Thus, the upstream air is essentially stagnant with
respect to the test section.

3. The static pressure at the exit of the diffuser is
the same as that read by a static pressure tap located in the
plane of the diffuser exit and 6 inches from its centerline.

Diffuser performance as z function of inlet Mach number
was originally plotted on nineteen separate graphs, one for
each diffuser. In general, the performance showed little
variation over the range of Mach numbers tested. Close to
choking, however, there is sudden, sharp decrease in per-
formance.* This is very similar to the results obtained by
previous investigators. Any systematic variation of diffuser
performance with inlet Mach number seemed to be dependent on
the line of first appreciable stall. Below the line of first
appreciable stall the smaller angle diffusers with relatively
smooth flcw exhibited a slight upward trend in performance as
the inlet Mach number was increased. This trend was not
present in the diffusers close to the first appreciable stall
line; in diffusers close to the first appreciable stall
line performance is essentially constant until choking is
reached. Above the line of first appreciable stall, the per-
formance decreased with increasing Mach number. 1In general
as the location above the line increased, the drop off in per-

formance, with increasing inlet Mach number, increased.

* See Appendix D.

.- . b s
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The separate performance curves were combined into sets
for either constant area ratio, constant length ratio, or
constant divergence angle. The results plotted for conctant
area ratio are presented in Figures 5-9. In Figure 5, all
of the curves essentially fall on the same line. Examination
of the flow regime chart shows that all three of the dif-
fusers in the figure lie well inside the unseparated region.
In Figure 6, all but one of the curves fall together. Examin-
ation of the flow regime chart shows that the diffuser with
the lowest performance for all Mach nuwmbers has a geometry
vhich lies above the line of first appreciable stall. 1In
Pigure 7, the two geometries with the lower performance are
located above the line of first appreciable stall; the dif-
fuser showing the lowest performance lies at the greatest
distance above the line. This same trend in diffuser per-
formance is observed at increased area ratio as shown in
Figures 8 and 9.

For a given area ratio, diffuser performance, at a given
Mach number, is independent of diffuser angle (or length ratio)
for diffuser geometries lying below the line of first appreci-
able stall. For a given area ratio, diffuser performance
will drop off at all Mach numbers as one proceeds to geo~
metries lying above line a-a. The drop off in performance
increases with increasing distance above line a-a (increased
flow separation). The consistancy of these results can be taken
as further substantiation of the location of the line of
first appreciable stall in conical diffusers as presented by

McDonald and Foxz.
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No systematic variation in diffuser performance as a
function of Mach number was observed when the curves were
plotted for constant length ratios. Consequently these plots
@te not reproduced here.

Figures 10-14 show diffuser performance versus inlet
Mach number at constant divergence angle. On these plots
the results are not as clear as those plotted for constant
area ratio; however a systematic variation is evident. For
a given divergence angle, the performance at any Mach number
is a maximu: for diffusers with the maximum area ratio. The
spread of peiformance as a function of the area ratio for a
given divergen.:s angle decreases as the divergence angle is
increased. At a divergence angle of 31.2 degrees, diffuser
performance is uniformly low and essentially independent of
area ratio at all Mach numbers.

Figures 15, 16, and 17 present performance maps for
conical diffusers at Mach number of 0,25, 0.55 and 0.70
respectively. Lines of constant performance are presented on
plots of area ratio versus length ratio. For a given value
of Ml, these constant performance contours were obtained from
three different cross plots of the data*; the data were plot-

ted as C vs AR at constant 2¢

pr V8 N/R1 at constant AR, CPR
and CPR vs 2¢ at constant N/Rl. A summary of the data employed
and the actual cross plots are given in Appendix B.

The location of the line of maximum performance at com-
stant diffuser length to inlet radius ratio, line a-a is
shown on each of the performance maps. On Figure 15 the

dashed line shows the location of line a-a as determined in

L S -
See Appéendix C.- AR G S
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the water flow studies of McDonald and Foxz. The agreement
with the present air flow studies for incompressible flow is
excellent. A comparisc of Figures 15 and 16 shows that
there is a slight upward shift in the location of the line
a-a as the inlet Mach number is increased from 0.25 to 0.55.
However the shift is within the uncertainty in the data.

When the inlet Mach number is increased to 0.70, line a-a

is slightly lower than that for M, = 0.25 (Compare Figures

15 and 17); again the shift is within the uncertainty in the
data.

From the performance maps it can be seen that for a
given inlet Mach number and diffuser area ratio, there is an
optimum diffuser length which will result in maximum pressure
recovery. This point is illustrated further in Figure 18,
Pigure 18 shows diffuser performance as a function of area
ratic for various values of the length ratio and an inlet
Mach number of 0.70. It can be seen that at low values of
area ratio the curves coincide. As the area ratio increases,
the curves for the lower values of length ratio drop off.
From this plot, one can readily determine the optimum length
ratio for maximum performance at a given area ratio. For
example, for an area ratio = 1.70 and Mach number = 0.79,
Figure 18 indicates that no increase in performance is to be

gained by going to an N/R1 above 8.0.



28

,af2]
/
/
§H- . p)
‘ /
/ // 080

»
AR -1
-

10.60—

- 0350

\

N/R,
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CONCLUSIONS

From a consideration of the foregoing experimental re-

sults, the following conclusions can be drawn:

1.

3.

- T e—

For incompressible flow the line of first appreciable
stall, line a~a, is essentially that found by McDonald
and roxz. As the Mach number is increased, however,
the flow tends more toward separation in all cases.
The variation of the diffuser performance with
inlet Mach number appears to correlate on the
location of line a-a for incompremsible flow.
= Por diffuser geometries lying be..ow line a-a

there i3 a slight increase in difauser performance

with increasing Mach number.

‘= Por diffuser geometries lying close to line a-a

diffuser performance is essentially constant up
to the point of local choking.

- For diffuser geometries lying above the line a-a
diffuser performance decreases with increasing
Mach number.

At a given area ratio, diffuser performance, for a

given Mach nuwrher, is independent of diffuser diver-

gence anglé (or length ratio) for diffuser geometries
lying below the line of first appr~ciable stall. For

a given area ratio, diffuser performance will drop

off at all Mach numbers as one proceeds to geometries

L s e e e e e = . - e - .. . . e cme s 4 e . C e [P

S, L
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lying above line a-a. The drop off in performance
increases with increasing distance above the line
a-a.

For a given divergence angle, diffuser performance
at any Mach number is maximum for the maximum area
ratio. The spread in performance as a function of
area ratio for a given divergence angle decreases
as the divergence angle is increased. At a diver-
gence angle of 31.2 degrees, diffuser performance
is uniformly low and independent of area ratio at
all Mach numbers.

There is no significant variation in the location
of the line of maximum performance at constant
length to inlet radius ratio, line a~a, with inlet
Mach number. For M,
studv is virtually identical to that found in the

earlier water flow studies of McDonald and Poxz.

= 0,25 line a-a of the present

For a given area ratio and inlet Mach number there
is an optimum length beyond which no increase in

diffuser performance is obtained.
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APPENDIX P
Tabulation of Diffuser Performance at Selected Mach Numbers

and Cross Plots of Data Used in Plotting Performance Maps
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Table B.1l

degrees

2.0
2,0
2.0
4.0
4.0
4.0
4.0
e.o
8.0
8.0
8.0
8.0
15.8
15.8
15.8
15.8
31.2
31.2
31.2

65

Diffuser Performance at Selected Mach Numbers.
Ta'‘ulated data taken from plots of CPR vs M,

N/R1

8.0
16.0
32.0
4.0
8.0
16.0
32.0
2.0
4.0
8.0
16.0
26,8
2.0
4.0
8.0
13.4
2,0
4.0
6.7
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APPENDIX C., Method of Obtaining Performance Maps

The diffuser performance maps (contours of constant CPR
on coordinates of AR-1 vs N/Rl) of Figures 16, 17, and 18 lave
been drawn from the cross-plots given in Appendix B; the data
used in the cross-plots is tabulated in Tables B-l.

For a given inlet Mach number the data of Table B-l has
been plotted as CPR ve 2¢ at constant N/Rl. (For "1 = 0,25
these plots are shown in Figure Bl, B2 and B3 respectively.)
From each of these plots one can then obtain a series of
diffuser geometries which will yield a given value of Cpr*
Consider the case of Hl = 0.25; suppose further that we are
interested in obtaining diffuser geometries for which Cor ™
0.5. From Figure Bl we see that there are five conical
diffuser geometries for which we would expect Cpr = 0.5:
from Figure B2 we obtain three additional geometries; Figure
B3 yields another five geometries. Thus the contour of Cpr =
0.5 on the performance map of Figure 15 is based on a total
of thirteen points.

‘By following this procedure sufficient points were
obtained to enable smooth contours of constant C,, to be

established on the performance maps.
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APPENDIX D. Discussion of Diffuser Choking

The results of the present study indicate that for a
given inlet Mach number, diffuser performance may be multi-
valued, i.e. there may he a value of the inlet Mach number
for which the slope of the CPR vs Ml curve becomes infinite.
This is not surprising. 1In fact it can be shown that the-
oretically this occurs for an inlet Mach number of unity.

The diffuser performance is given by

Treating air as an ideal gas, then P, = plnrl, and the
sonic velocity is given by c, = /ﬁﬁ?{

Thus we can write
(5= =~ 1)
Cpr * —T—Eg.l.
where k is the specific heat ratic (F=1.4 for air).

In the present study the diffuser is nrececed by a con-
verging section (fig. 3); the f£flo frcm the diffuser dic-
charges to the atmosphere. Thus for a aiven diffuser there
is a wide range of upstream staqgraticn pressures which will
give a throat Mach number of unitv. Cince, Pz = constant,

then with Ml = 1, tbhe diffuser inlet pressure, Pl' can be
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increascd arbitrarily by increasina the upstream stagnation
pressure; thus the slope of the CPR vs Hl curve recowes in-

finite at a value of M, = 1,

1
The data indicate that thics sudden sharp decrease in

diffuser performance occurred at a measured inlet Mach numbter

less than unity (but greater than M, = 0.90). This may be

expected if one considers the location of the inlet pressure

tap. For ease of construction the inlet pressure tap (for

measurement of Pl) was located in the straight section of

the inlet nozzle a distance of 1.12 inches upstream of the

diffuser throat. If one considers the flow between the

pressure tap and the diffuser throat as Fanno line flow,

small frictional effects will cause relatively large in-

creases in the Mach number for a measured Mach number H130.9o.

That the throat velocity is sonic for n120.90 can also be

demonstrated from consideration of the one~dimensional

isentropic flow tables. For M = 0.90, Al/A* = 1.0088 where

A* is the flow area at which the Mach number is unity. Thus

a very small increase in the boundary layer displacement thick-

ness between the measuring station and the diffuser throat is

sufficient to give a throat Mach number of unity.
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